4766 Statistics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& (i) \& \begin{tabular}{cc|cccccccccc}
\& 5 \& 2 \& \& \& \& \& \& \& \& \\
\& 6 \& 3 \& 4 \& 7 \& 8 \& \& \& \& \& \\
\& 7 \& 1 \& 2 \& 2 \& 3 \& 4 \& 5 \& 5 \& 7 \& 9 \\
\& 8 \& 1 \& \& \& \& \& \& \& \& \\
\& Key \& 6 \& 3 \& represents 63 mph \& \& \&
\end{tabular} \& \begin{tabular}{l}
G1 stem \\
G1 leaves CAO \\
G1 sorted \\
G1 key
\end{tabular} \& [4] \\
\hline \& (ii) \& \[
\begin{aligned}
\& \text { Median = } 72 \\
\& \text { Midrange }=66.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 FT } \\
\& \text { B1 CAO }
\end{aligned}
\] \& [2] \\
\hline \& (iii) \& EITHER: Median since midrange is affected by outlier (52) \(O R\) : Median since the lack of symmetry renders the midrange less representative \& \begin{tabular}{l}
E1 for median E1 for explanation \\
TOTAL
\end{tabular} \& [2]
[8] \\
\hline 2 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(X=10)=\mathrm{P}(5\) then 5\()=0.4 \times 0.25=0.1\) \\
(B) \(\mathrm{P}(X=30)=\mathrm{P}(10\) and 20\()=0.4 \times 0.25+0.2 \times 0.5=0.2\)
\end{tabular} \& \begin{tabular}{l}
B1 ANSWER GIVEN \\
M1 for full calculation \\
A1 ANSWER GIVEN
\end{tabular} \& \begin{tabular}{l}
[1] \\
[2]
\end{tabular} \\
\hline \& (ii) \& \[
\begin{aligned}
\& \mathrm{E}(\mathrm{X})=10 \times 0.1+15 \times 0.4+20 \times 0.1+25 \times 0.2+30 \times 0.2=20 \\
\& \mathrm{E}\left(\mathrm{X}^{2}\right)= \\
\& \quad 100 \times 0.1+225 \times 0.4+400 \times 0.1+625 \times 0.2+900 \times 0.2=445 \\
\& \operatorname{Var}(X)=445-20^{2}=45
\end{aligned}
\] \& \begin{tabular}{l}
M1 for \(\Sigma \mathrm{rp}\) (at least 3 terms correct) \\
A1 CAO \\
M1 for \(\Sigma r^{2} p\) (at least 3 terms correct) \\
M1 dep for - their E (X) \({ }^{2}\) \\
A1 FT their E(X) provided \(\operatorname{Var}(\mathrm{X}\)) \(>0\) \\
TOTAL
\end{tabular} \& [5]
[8] \\
\hline 3 \& (i)

(ii) \& \begin{tabular}{l}
$$
\mathrm{P}(G) \times \mathrm{P}(R)=0.24 \times 0.13=0.0312 \neq \mathrm{P}(G \cap R) \text { or } \neq 0.06
$$

So not independent.

 \&

G1 for two labelled intersecting circles

G1 for at least 2 correct probabilities

G1 for remaining probabilities

M1 for 0.24×0.13 A1
\end{tabular} \& [3]

[2]

\hline
\end{tabular}

	(iii)	$P(R \mid G)=\frac{P(R \cap G)}{P(G)}=\frac{0.06}{0.24}=\frac{1}{4}=0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]
4	(i)	$\mathrm{P}(20$ correct $)=\binom{30}{20} \times 0.6^{20} \times 0.4^{10}=0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number $=100 \times 0.1152=11.52$	M1 A1 FT (Must not round to whole number) TOTAL	[2] [5]
5	(i)	$\mathrm{P}($ Guess correctly $)=0.1^{4}=0.0001$	B1 CAO	[1]
	(ii)	$\mathrm{P}($ Guess correctly $)=\frac{1}{4!}=\frac{1}{24}$	M1 A1 CAO TOTAL	[2] [3]
6	(i)	$20 \times 19 \times 18=6840$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	[2]
	(ii)	$20^{3}-20=7980$	M1 for figures - 20 A1 TOTAL	[2] [4]

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(\) Low on all 3 days \()=0.5^{3}=0.125\) or \(1 / 8\) \\
(B) \(\mathrm{P}(\) Low on at least 1 day \()=1-0.5^{3}=1-0.125=0.875\) \\
(C) P (One low, one medium, one high)
\[
=6 \times 0.5 \times 0.35 \times 0.15=0.1575
\]
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.5^{3}\) \\
A1 CAO \\
M1 for \(1-0.5^{3}\) \\
A1 CAO \\
M1 for product of probabilities \(0.5 \times\) \(0.35 \times 0.15\) or \({ }^{21} / 800\) \(\mathrm{M} 1 \times 6\) or \(\times 3\) ! or \({ }^{3} \mathrm{P}_{3}\) \\
A1 CAO
\end{tabular} \& [2]
[2]
[3] \\
\hline \& (ii) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(10,0.15)
\] \\
(A) \(\mathrm{P}(\) No days \()=0.85^{10}=0.1969\) \\
Or from tables \(\mathrm{P}(\) No days \()=0.1969\) \\
(B) Either \(\mathrm{P}(1\) day \()=\binom{10}{1} \times 0.15^{1} \times 0.85^{9}=0.3474\) or from tables \(\mathrm{P}(1\) day \()=\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0)\) \(=0.5443-0.1969=0.3474\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \(0.15^{1} \times 0.85^{9}\) \\
M1 \(\binom{10}{1} \times p^{1} q^{9}\) \\
A1 CAO \\
OR: M2 for 0.5443 -
\[
0.1969
\] \\
A1 CAO
\end{tabular} \& [2]

[3]

\hline \& (iii) \& | Let $X \sim \mathrm{~B}(20,0.5)$ |
| :--- |
| Either: $\mathrm{P}(X \geq 15)=1-0.9793=0.0207<5 \%$ |
| Or: Critical region is $\{15,16,17,18,19,20\}$ |
| 15 lies in the critical region. |
| So there is sufficient evidence to reject H_{0} |
| Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street. |
| H_{1} has this form as she believes that the probability of a low pollution level is greater in this street. | \& | Either: |
| :--- |
| B1 for correct probability of 0.0207 |
| M1 for comparison Or: |
| B1 for CR, |
| M1 for comparison |
| A1 CAO dep on B1M1 |
| E1 for conclusion in context |
| E1 indep | \& [5]

[17]

\hline
\end{tabular}

